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Abstract
The analytic properties of the lattice Green functions

G1(α1, w1)

= 1

π3

∫ π

0

∫ π

0

∫ π

0

dθ1 dθ2 dθ3

w1 − cos θ1 cos θ2 − cos θ2 cos θ3 − α1 cos θ3 cos θ1

and

G2(α2, w2) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dθ1 dθ2 dθ3

w2 − cos θ1 − cos θ2 − α2 cos θ3

are investigated, where w1, w2 are complex variables and α1, α2 are real
parameters in the interval (0,∞). In particular, simple and direct methods
are developed which enable one to evaluate G1(α1, w1) and G2(α2, w2)

in terms of products of two complete elliptic integrals of the first kind.
Kampé de Fériet series are also used to derive new transformation formulae
which give connections between G1(α1, w1) and G2(α2, w2).

PACS numbers: 02.30.Gp, 05.50.+q

1. Introduction

In this paper we shall investigate the analytic properties of the lattice Green functions

Gj(αj , wj ) = 1

π3

∫ π

0

∫ π

0

∫ π

0

dθ1 dθ2 dθ3

wj − �j(αj : θ1, θ2, θ3)
(j = 1, 2) (1.1)

where w1, w2 are complex variables,

�1(α1 : θ1, θ2, θ3) = cos θ1 cos θ2 + cos θ2 cos θ3 + α1 cos θ3 cos θ1 (1.2)

�2(α2 : θ1, θ2, θ3) = cos θ1 + cos θ2 + α2 cos θ3 (1.3)
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and α1, α2 are real parameters in the interval (0,∞). The Green function G1(α1, w1) is
frequently encountered in lattice statistical problems which involve the face-centred cubic
(fcc) lattice with partially anisotropic interactions, while G2(α2, w2) is important in similar
problems involving the simple cubic (sc) lattice (Berlin and Kac 1952, Maradudin et al 1960,
Montroll and Weiss 1965, Joyce 1972a, Kobelev and Kolomeisky 2002).

The integral (1.1) with j = 1 defines a single-valued analytic function G1(α1, w1) in the
w1 complex plane provided that a cut is made along the real axis from w1 = min(−α1,−2 + α1)

to w1 = 2 + α1. A similar property holds for the integral (1.1) with j = 2 provided that the
cut is made along the real axis of the w2 plane from w2 = −2 − α2 to w2 = 2 + α2. We shall
denote the set of points in the w1 and w2 cut planes by C−

1 and C−
2 , respectively. Taylor series

representations for {Gj(αj , wj ) : j = 1, 2} can be obtained by expanding the integrand in
(1.1) in inverse powers of wj and then integrating term-by-term. Hence, we find that

wjGj(αj , wj ) = 1 +
∞∑

n=2

µ
(j)
n (αj )

wn
j

(1.4)

where |wj | � 2 + αj ,

µ(j)
n (αj ) = 1

π3

∫ π

0

∫ π

0

∫ π

0
[�j(αj : θ1, θ2, θ3)]

n dθ1 dθ2 dθ3 (1.5)

and j = 1, 2. In the appendix we list formulae for
{
µ(1)

n (α1) : n = 2, 3, . . . , 10
}
. It has also

been shown (Delves and Joyce 2001) that

µ
(2)
2n (α2) =

(
1
2

)
n

n!
α2n

2 3F2


−n, −n, 1

2 ;
4
/
α2

2

1, 1;


 (1.6)

where (b)n is the Pochhammer symbol and 3F2 is a generalized hypergeometric series. We
note that µ(2)

n (α2) is equal to zero when n is an odd positive integer.
The Green function G1(α1, w1) was first evaluated by Joyce (1971) in terms of a product

of two complete elliptic integrals of the first kind. In section 2 of the present paper we shall
derive the Joyce product form by following an alternative procedure in which the triple integral
for G1(α1, w1) is first reduced to a single integral of the type

I (A,B) ≡ 2

π2

∫ π

0
K

(√
A + B cos ψ

)
dψ (1.7)

where A,B are complex variables and K(k) is a complete elliptic integral of the first kind
with a modulus k. The required product form for G1(α1, w1) is then obtained by applying the
method of Iwata (1969) to (1.7). In section 3 we shall show that I (A,B) can be represented
as a Kampé de Fériet series of the type F

2:0;1
1:0;1 (see Srivastava and Karlsson 1985). Two further

Kampé de Fériet representations for I (A,B) of the type F
1:1;2
1:0;1 and F

3:0;0
1:1;1 are also obtained

by applying transformation formulae to the F
2:0;1
1:0;1 series. We shall find in section 4 that these

series representations for I (A,B) play a crucial role in the evaluation of G2(α2, w2).
Recently, Delves and Joyce (2001) have carried out a detailed investigation of the analytic

properties of the Green function G2(α2, w2). In particular, it was shown that the function
y ≡ w2G2(α2, w2) is a solution of a fourth-order linear differential equation of the type

4∑
j=0

fj (α2, z)D
4−j y = 0 (1.8)

where {fj (α2, z) : j = 0, 1, . . . , 4} is a set of polynomials in the variables α2 and z, D ≡ d/dz

and z = 1
/
w2

2. It was then proved that all the solutions of this differential equation can
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be expressed in terms of a product of two functions H1(α2, z) and H2(α2, z) which satisfy
second-order linear differential equations of the normal type

[D2 + U+(α2, z)]y = 0 (1.9)

[D2 + U−(α2, z)]y = 0 (1.10)

respectively, where U±(α2, z) are complicated algebraic functions of α2 and z. Next these
second-order differential equations were both reduced to the Gauss hypergeometric differential
equation by using Schwarzian transformation theory. Finally, it was deduced from this result
that w2G2(α2, w2) could be expressed in terms of a product form of the type K(k+)K(k−),
where the moduli k± are algebraic functions of α2 and z.

Our main aim in section 4 of this paper is to derive the Delves–Joyce product form by a
new and direct method which avoids the use of complicated differential equations and non-
linear Schwarzian transformation theory. In the first stage of the analysis the triple integral
for G2(α2, w2) is reduced to a single integral of the type

J (C,D) ≡ 2

π2

∫ π

0
K(C + D cos ψ) dψ (1.11)

where C,D are complex variables. Next it is shown that J (C,D) has a Kampé de Fériet
series representation which is directly related to the F

3:0;0
1:1;1 series given in section 3 for the

integral I (A,B). Finally, this important relationship and known results for I (A,B) are used
to derive the Delves–Joyce product form for w2G(α2, w2). In section 5 we shall establish
new transformation formulae which enable one to make connections between G1(α1, w1) and
G2(α2, w2).

2. Evaluation of the fcc lattice Green function G1(α1, w1)

In this section we shall derive an exact product form for G1(α1, w1) by generalizing the
methods developed by Mannari and Kawabata (1964) and Iwata (1969) for the case α1 = 1.

2.1. Reduction of G1(α1, w1) to a single integral

In the first stage of the analysis we perform the integration over the variable θ3 in (1.1), with
j = 1 and then make the changes of variable θ1 = 2ϑ1 and θ2 = 2ϑ2. This procedure gives

G1(α1, w1) = 4

(w1 + α1)π2

∫ π/2

0
dϑ2

∫ π/2

0

dϑ1

[(1 − a cos2 ϑ1)(1 − b sin2 ϑ1)]1/2
(2.1)

where

a = [4 cos2 ϑ2 − 2(1 − α1)]/(w1 + α1) (2.2)

b = [4 sin2 ϑ2 − 2(1 − α1)]/(w1 + α1). (2.3)

We can now use the standard result (see Mannari and Kawabata 1964)∫ π/2

0

dϑ1

[(1 − a cos2 ϑ1)(1 − b sin2 ϑ1)]1/2
= K

(√
a + b − ab

)
(2.4)

where K(k) is the complete elliptic integral of the first kind with a modulus k, to write (2.1)
in the form

G1(α1, w1) = 1

w1 + α1
I (A1, B1) (2.5)
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where

A1 ≡ A1(α1, w1) = 2(2α1w1 + 1)/(w1 + α1)
2 (2.6)

B1 ≡ B1(α1, w1) = 2/(w1 + α1)
2 (2.7)

and

I (A,B) ≡ 2

π2

∫ π

0
K

(√
A + B cos ψ

)
dψ. (2.8)

In general, the variables (A,B) in the definition (2.8) can be taken to be independent complex
variables. However, it should be noted that for a given value of α1 the particular set of points
{A1(α1, w1), B1(α1, w1) : w1 ∈ C−

1 } is restricted to lie on the complex rational curve[
A1 +

(
2α2

1 − 1
)
B1

]2 − 8α2
1B1 = 0. (2.9)

2.2. Exact product forms for I (A,B) and G1(α1, w1)

Next we apply the Gaussian hypergeometric series

2

π
K(k) =

∞∑
n=0

(
1
2

)2
n

(1)2
n

k2n (2.10)

to the integrand in (2.8). In this manner, we obtain

I (A,B) =
∞∑

n=0

(
1
2

)2
n

(1)2
n

�n(A,B) (2.11)

where

�n(A,B) = 1

π

∫ π

0
(A + B cos ψ)n dψ (2.12)

and (a)n denotes the Pochhammer symbol. The integral (2.12) can be readily evaluated using
the method of residues. Hence, we obtain

�n(A,B) = (x+)
n

n∑
m=0

(
n

m

)2 (
x−
x+

)m

(2.13)

where

x± = 1
2

(
A ±

√
A2 − B2

)
. (2.14)

If (2.13) is substituted in (2.11) and the order of the resulting two summations is interchanged
we find that it is possible to express I (A,B) in the form

I (A,B) = F4
(

1
2 , 1

2 ; 1, 1; x+, x−
)

(2.15)

where F4(α, β; γ, γ ′; x, y) is the fourth Appell hypergeometric function in two variables x
and y.

In the final stage of the analysis we simplify (2.15) by using the Bailey (1933) identity

F4[α, β; γ, α + β − γ + 1; x(1 − y), y(1 − x)]

= 2F1(α, β; γ ; x) 2F1(α, β;α + β − γ + 1; y). (2.16)

This procedure yields the important general formula

I (A,B) =
(

2

π

)2

K(k+)K(k−) (2.17)
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where

k2
± ≡ k2

±(A,B) = 1
2 ± 1

2

√
A2 − B2 − 1

2

√
(1 − A)2 − B2. (2.18)

If we now substitute (2.17) in (2.5) and apply the relations (2.6) and (2.7) we obtain the
required result

w1G1(α1, w1) = 1

1 + α1z1

(
2

π

)2

K(k+)K(k−) (2.19)

where

k2
± ≡ k2

±(α1, w1) = 1

2
± 2α1z1

(1 + α1z1)2

(
1 +

z1

α1

)1/2

− (1 − α1z1)

2(1 + α1z1)2
[1 + (2 − α1)z1]1/2 [1 − (2 + α1)z1]1/2 (2.20)

and z1 = 1/w1. The product form (2.19) is in agreement with the work of Joyce (1971).
It can be shown that the formula (2.19) is valid provided that z1 lies in a certain

finite region R1(α1) of the cut z1 plane which surrounds the point z1 = 0. The points
z1 on the boundary of R1(α1) are associated with values of k2

+ which lie in the interval
1
2 + 1

2

[
1 +

(
1
/
α2

1

)]1/2 � k2
+ < ∞. We can extend the range of validity of (2.19) across

the boundary curve by constructing the analytic continuation of K(k+) onto the appropriate
adjacent Riemann sheet (see Morita and Horiguchi 1971).

When α1 = 1 the product form (2.19) reduces to the Iwata (1969) formula for
w1G1(1, w1), while for the special case α1 = 1 and w1 = 3 we find that k+ becomes the
complementary modulus k′

− and k− = k3, where kN denotes the N th singular value for
the modulus (see Borwein and Borwein 1987). From these results and (2.19) we obtain the
well-known result (Watson 1939)

G1(1, 3) =
√

3

4

[
2

π
K(k3)

]2

(2.21)

where

k3 =
√

3 − 1

2
√

2
. (2.22)

3. Kampé de Fériet series for I(A, B)

From the analysis in the previous section and the work of Iwata (1969), Rashid (1980) and
Montaldi (1981) it is clear that the integral I (A,B) and the product formula (2.17) are of
particular importance in the evaluation of three-dimensional lattice Green functions. In this
section we shall derive various representations for I (A,B) in terms of the Kampé de Fériet
series (see Srivastava and Karlsson 1985)

F
p:r;u
q:s;v


α1, . . . , αp : γ1, . . . , γr; ρ1, . . . , ρu;

x, y

β1, . . . , βq : δ1, . . . , δs; σ1, . . . , σv;




=
∞∑

,m=0

∏p

j=1(αj )+m

∏r
j=1(γj )

∏u
j=1(ρj )m∏q

j=1(βj )+m

∏s
j=1(δj )

∏v
j=1(σj )m

x

!

ym

m!
. (3.1)

We shall see in section 4 that these new representations play a crucial role in the evaluation of
the sc lattice Green function G2(α2, w2).
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3.1. Basic results

We first consider the expansion (2.11) and use the change of variable ψ = 2ϑ to write the
integral �n(A,B) in the alternative form

�n(A,B) = 2

π

∫ π/2

0
[(A − B) + 2B cos2 ϑ]n dϑ. (3.2)

After applying the binomial theorem to the integrand in (3.2) we obtain the formula

�n(A,B) =
n∑

m=0

(
n

m

)(
1
2

)
m

(1)m
(A − B)n−m(2B)m. (3.3)

We now substitute (3.3) in (2.11) and reverse the order of the resulting two summations. This
procedure gives

I (A,B) =
∞∑

,m=0

(
1
2

)2
+m

(
1
2

)
m

(1)+m(1)m

(A − B)

!

(2B)m

m!
. (3.4)

If we compare the double series (3.4) with the general definition (3.1) we obtain the
Kampé de Fériet series representation

I (A,B) = F
2:0;1
1:0;1




1
2 , 1

2 : −; 1
2 ;

A − B, 2B

1 : −; 1;


 . (3.5)

When B = A it is readily seen that (3.5) reduces to

I (A,A) = 3F2
(

1
2 , 1

2 , 1
2 ; 1, 1; 2A

)
(3.6)

where 3F2 is a generalized hypergeometric series.

3.2. Generalized Euler transformation formula

Next we shall prove the generalized Euler transformation formula

F
2:0;1
1:0;1




1
2 , 1

2 : −; 1
2 ;

x, y

1 : −; 1;


 = 1

(1 − x)1/2
F

1:1;2
1:0;1




1
2 : 1

2 ; 1
2 , 1

2 ;
x

x−1 ,
y

1−x

1 : −; 1;


 . (3.7)

We begin by using (3.1) to express the right-hand side of equation (3.7) in the form

�(x, y) =
∞∑

,m=0

(
1
2

)
+m

(
1
2

)


(
1
2

)2
m

(1)+m(1)m!m!

(−1)xym

(1 − x)+m+ 1
2

. (3.8)

Next the binomial expansion

(1 − x)−(+m+ 1
2 ) =

∞∑
t=0

(
 + m + 1

2

)
t

t!
xt (3.9)

and the identity(
 + m +

1

2

)
t

=
(

1
2

)
+m+t(

1
2

)
+m

(3.10)

are applied to (3.8) and the resulting double series in powers of x is rearranged by introducing
the summation variable n =  + t . In this manner, we find that

�(x, y) =
∞∑

n,m=0

(
1
2

)
n+m

(
1
2

)2
m

(1)m
f (n,m)

xn

n!

ym

m!
(3.11)
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where

f (n,m) = 1

m!
2F1

(
−n,

1

2
;m + 1; 1

)
. (3.12)

The application of the Gauss summation formula to (3.12) gives

f (n,m) =
(

1
2

)
n+m(

1
2

)
m
(1)n+m

. (3.13)

If the result (3.13) is substituted in (3.11) we see that �(x, y) has been reduced to the left-hand
side of equation (3.7), and the proof of the identity (3.7) is complete.

We now apply the transformation formula (3.7) to (3.5). Hence, we obtain the second
Kampé de Fériet series representation

I (A,B) = 1

(1 − A + B)1/2
F

1:1;2
1:0;1




1
2 : 1

2 ; 1
2 , 1

2 ;
− A−B

1−A+B
, 2B

1−A+B

1 : −; 1;


 . (3.14)

3.3. Generalized Bailey transformation formula

Recently, Karlsson et al (2000) have established the transformation formula

F
1:2;2
1:1;1


γ + γ ′ − 1 : α, β; α, β;

x, y

α + β : γ ; γ ′;




= F
3:0;0
1:1;1


γ + γ ′ − 1, α, β : −; −;

x(1 − y), y(1 − x)

α + β : γ ; γ ′;


 . (3.15)

When γ + γ ′ = α + β + 1 this result reduces to the well-known Bailey identity (2.16).
If we consider (3.15) with α = β = γ = 1

2 and γ ′ = 1 it is seen that the F
1:2;2
1:1;1 series in

(3.15) reduces to the same type of Kampé de Fériet series which occurs in (3.14). It follows,
therefore, that we can also write

I (A,B) = 1

(1 − A + B)1/2

×F
3:0;0
1:1;1




1
2 , 1

2 , 1
2 : −; −;

− (A−B)(1−A−B)

(1−A+B)2 , 2B
(1−A+B)2

1 : 1
2 ; 1;


 . (3.16)

4. Evaluation of the sc lattice Green function G2(α2, w2)

Our main aim in this section is to give a new, simple and direct derivation of the Delves–Joyce
(2001) product form for G2(α2, w2).

4.1. Reduction of G2(α2, w2) to a single integral

We begin by performing the integration over the variable θ1 in (1.1), with j = 2. In this
manner, it is found that

G2(α2, w2) = 1

π2

∫ π

0
dθ3

∫ π

0

dθ2

[(c − cos θ2)(d − cos θ2)]1/2
(4.1)
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where

c = w2 + 1 − α2 cos θ3 (4.2)

d = w2 − 1 − α2 cos θ3. (4.3)

If we now apply the standard result∫ π

0

dθ2

[(c − cos θ2)(d − cos θ2)]1/2
= 2

[(c − 1)(d + 1)]1/2
K(k) (4.4)

where

k2 = 2(c − d)

(c − 1)(d + 1)
(4.5)

to (4.1) we obtain the formula

G2(α2, w2) = 2

π2

∫ π

0

1

w2 − α2 cos θ3
K

(
2

w2 − α2 cos θ3

)
dθ3. (4.6)

Next the integration variable in (4.6) is changed from θ3 to ψ using the transformation

cos θ3 = w2 cos ψ + α2

w2 + α2 cos ψ
. (4.7)

Hence, we find that

G2(α2, w2) = 1(
w2

2 − α2
2

)1/2 J (C2,D2) (4.8)

where

C2 ≡ C2(α2, w2) = 2w2
/(

w2
2 − α2

2

)
(4.9)

D2 ≡ D2(α2, w2) = 2α2
/(

w2
2 − α2

2

)
(4.10)

and

J (C,D) ≡ 2

π2

∫ π

0
K(C + D cos ψ) dψ. (4.11)

In general, the variables (C,D) in the definition (4.11) can be taken to be independent
complex variables. However, it should be noted that the particular set of points
{C2(α2, w2),D2(α2, w2) : w2 ∈ C−

2 } is restricted to lie on the complex curve

α2
(
C2

2 − D2
2

) − 2D2 = 0. (4.12)

4.2. Connection between J (C,D) and I (A,B)

We now establish a link between J (C,D) and I (A,B). In the first stage of the analysis the
hypergeometric series (2.10) is substituted in (4.11). This procedure gives

J (C,D) =
∞∑

n=0

(
1
2

)2
n

(1)2
n

�2n(C,D) (4.13)

where

�2n(C,D) = 1

π

∫ π

0
(C + D cos ψ)2n dψ. (4.14)
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If the binomial theorem is applied to the integrand in (4.14) it is found that

�2n(C,D) =
n∑

m=0

(
2n

2m

)(
1
2

)
m

(1)m
C2n−2mD2m. (4.15)

Next we substitute (4.15) in (4.13) and reverse the order of the resulting two summations.
In this manner, we obtain

J (C,D) =
∞∑

,m=0

(
1
2

)3
+m

(1)+m

(
1
2

)

(1)m

C2

!

D2m

m!
. (4.16)

From the double series (4.16) and the definition (3.1) we see that

J (C,D) = F
3:0;0
1:1;1




1
2 , 1

2 , 1
2 : −; −;

C2,D2

1 : 1
2 ; 1;


 . (4.17)

Finally, a comparison of (4.17) with (3.16) yields the required connection formula

J (C,D) = (1 − A + B)1/2I (A,B) (4.18)

where A and B are appropriate solutions of the simultaneous equations

C2 = − (A − B)(1 − A − B)

(1 − A + B)2
(4.19)

D2 = 2B

(1 − A + B)2
(4.20)

and the integral I (A,B) is defined in (2.8).

4.3. Exact product forms for J (C,D) and G2(α2, w2)

We shall now use the relation (4.18) to derive an exact formula for the general integral J (C,D).
From the algebraic equations (4.19) and (4.20) we find that the relevant solutions for A and B
are given by

A = 1

4D2
[(C2 − D2)2 + 2D2 − 1 + (C2 − D2 + 1)S(C,D)] (4.21)

B = 1

4D2
[(C2 − D2)2 − 2C2 + 1 + (C2 − D2 − 1)S(C,D)] (4.22)

where

S(C,D) = [(C2 − D2)2 − 2(C2 + D2) + 1]1/2. (4.23)

Next we substitute (2.17) in (4.18) and apply equations (4.21) and (4.22). After a
considerable amount of algebraic simplification it is found that

J (C,D) = 2√
(1 − D)2 − C2 +

√
(1 + D)2 − C2

(
2

π

)2

K(k+)K(k−) (4.24)

where

k2
± ≡ k2

±(C,D) = 1

2
− 1

2C

[√
(1 − D)2 − C2 +

√
(1 + D)2 − C2

]−3

×
[
(C + D)

√
1 − (C − D)2 + (C − D)

√
1 − (C + D)2

]

×
{
±4C

√
C2 − D2 +

[√
(1 + C)2 − D2 +

√
(1 − C)2 − D2

]2
}

. (4.25)
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This formula is valid provided that (C,D) lies in a sufficiently small neighbourhood of the
origin point (C,D) = (0, 0).

Finally, we can use (4.24) and (4.8)–(4.10) to derive an exact product form for G2(α2, w2).
In particular, we deduce that

w2G2(α2, w2) = 2√
1 − (2 − α2)

2z2
2 +

√
1 − (2 + α2)

2z2
2

[
2

π
K(k+)

] [
2

π
K(k−)

]
(4.26)

where

k2
± ≡ k2

±(α2, z2) = 1

2
− 1

2

[√
1 − (2 − α2)2z2

2 +
√

1 − (2 + α2)2z2
2

]−3

×
[√

1 + (2 − α2)z2

√
1 − (2 + α2)z2 +

√
1 − (2 − α2)z2

√
1 + (2 + α2)z2

]

×
{
±16z2

2 +
√

1 − α2
2z

2
2

[√
1 + (2 − α2)z2

√
1 + (2 + α2)z2

+
√

1 − (2 − α2)z2

√
1 − (2 + α2)z2

]2
}

(4.27)

and z2 = 1/w2. It can be shown that this basic formula is valid for all values of w2 ∈ C−
2 .

A detailed investigation of the analytic properties of (4.26) has already been given by Delves
and Joyce (2001).

When α2 = 1 the product form (4.26) yields results which are in agreement with the work
of Joyce (1972b, 1973). For the special case α2 = 1 and w2 = 3 we find that (4.26) gives

G2(1, 3) = 2
√

2

π2
K(k+)K(k−) (4.28)

where

k2
± = − 1

2

(
2
√

3 − 1 ±
√

6
)

. (4.29)

It can be shown (see Joyce 1973, p 602) that (4.28) can be expressed in the alternative form

G2(1, 3) =
(

18 + 12
√

2 − 10
√

3 − 7
√

6
) [

2

π
K(k6)

]2

(4.30)

where

k6 =
(

2 −
√

3
) (√

3 −
√

2
)

. (4.31)

The formula (4.30) was first derived by Watson (1939) using a completely different method.

5. Connections between G1(α1, w1) and G2(α2, w2)

In this concluding section we shall derive transformation formulae which provide one with
direct connections between the Green functions G1(α1, w1) and G2(α2, w2). We begin by
applying the general result (4.18) to equation (2.5). This procedure gives

G1(α1, w1) = 1

(w1 − α1)
J (C1,D1) (5.1)
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where

C2
1 = −4α1w1(w1 + 2 − α1)(w1 − 2 − α1)

(w1 − α1)4
(5.2)

D2
1 = 4(w1 + α1)

2

(w1 − α1)4
. (5.3)

We now compare (5.1) with (4.8) and impose the conditions

C2
1(α1, w1) ≡ C2

2(α2, w2) and D2
1(α1, w1) ≡ D2

2(α2, w2). (5.4)

In this manner, we obtain the connection formula

w1G1(α1, w1) =
[

w1(α1w1 + 1)

α1(w1 + 2 − α1)(w1 − 2 − α1)

]1/2

w2G2(α2, w2) (5.5)

where

w2
2 ≡ w2

2(α1, w1) = −α1w1(w1 + 2 − α1)(w1 − 2 − α1)

(α1w1 + 1)2
(5.6)

α2 ≡ α2(α1, w1) = w1 + α1

α1w1 + 1
. (5.7)

In order to check equations (5.5)–(5.7) we have used the series (1.4) with j = 2 and the
transformations (5.6) and (5.7) to expand the right-hand side of (5.5) in inverse powers of w1.
The resulting series coefficients

{
µ(1)

n (α1) : n = 2, 3, . . .
}

were found to be in agreement
with those listed in the appendix. If (5.5)–(5.7) are evaluated for the special case α1 = 1 and
w1 = −3 we obtain the interesting relation

G2(1, 3) = −
√

2G1(1,−3). (5.8)

Finally, we note that equations (5.6) and (5.7) can also be used to derive the inverse
connection formula

G2(α2, w2) = − 1

2α2

[√
w2

2 − (2 + α2)2 +
√

w2
2 − (2 − α2)2

]
G1(α1, w1) (5.9)

where

w1 ≡ w1(α2, w2) = − 1

4α2

{(
w2

2 − 4 − α2
2

)
+

√
w2

2 − α2
2

[√
w2

2 − (2 + α2)2

+
√

w2
2 − (2 − α2)2

]
+

√
w2

2 − (2 + α2)2
√

w2
2 − (2 − α2)2

}
(5.10)

α1 ≡ α1(α2, w2) = − 1

4α2

{(
w2

2 − 4 − α2
2

) −
√

w2
2 − α2

2

[√
w2

2 − (2 + α2)2

+
√

w2
2 − (2 − α2)2

]
+

√
w2

2 − (2 + α2)2
√

w2
2 − (2 − α2)2

}
. (5.11)

We have used the series (1.4) with j = 1 and the transformations (5.10) and (5.11) to expand
the right-hand side of (5.9) in inverse powers of w2. It was found that the resulting series
coefficients

{
µ

(2)
2n (α2) : n = 1, 2, . . .

}
were in agreement with the formula (1.6).
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Appendix. Formulae for the coefficients
{
µ(1)

n (α1) : n = 2, 3, . . . , 10
}

µ
(1)
2 (α1) = 1

4

(
2 + α2

1

)
µ

(1)
3 (α1) = 3

4α1

µ
(1)
4 (α1) = 9

64

(
6 + 8α2

1 + α4
1

)
µ

(1)

5 (α1) = 45
32α1

(
2 + α2

1

)
µ

(1)
6 (α1) = 5

256

(
100 + 333α2

1 + 90α4
1 + 5α6

1

)
µ

(1)
7 (α1) = 525

256α1
(
1 + α2

1

)(
5 + α2

1

)
µ

(1)
8 (α1) = 175

16 384

(
490 + 3 104α2

1 + 1 944α4
1 + 224α6

1 + 7α8
1

)
µ

(1)
9 (α1) = 525

4 096α1
(
294 + 652α2

1 + 252α4
1 + 21α6

1

)
µ

(1)
10 (α1) = 441

65 536

(
2 268 + 23 450α2

1 + 26 800α4
1 + 7 050α6

1 + 450α8
1 + 9α10

1

)
.

References

Bailey W N 1933 Q. J. Math. Oxford 4 305–8
Berlin T H and Kac M 1952 Phys. Rev. 86 821–35
Borwein J M and Borwein P B 1987 Pi and the AGM (New York: Wiley)
Delves R T and Joyce G S 2001 Ann. Phys., NY 291 71–133
Iwata G 1969 Natur. Sci. Rep. Ochanomizu Univ. 20 13–8
Joyce G S 1971 J. Phys. C: Solid State Phys. 4 L53–6
Joyce G S 1972a Phase Transitions and Critical Phenomena vol 2, ed C Domb and M S Green (London: Academic)

pp 375–442
Joyce G S 1972b J. Phys. A: Gen. Phys. 5 L65–8
Joyce G S 1973 Phil. Trans. R. Soc. A 273 583–610
Karlsson P W, Krupnikov E D and Srivastava H M 2000 Int. J. Math. Stat. Sci. 9 211–26
Kobelev V and Kolomeisky A B 2002 J. Chem. Phys. 117 8879–85
Mannari I and Kawabata C 1964 Extended Watson integrals and their derivatives Res. Notes no 15 Department of

Physics, Okayama University, Okayama, Japan
Maradudin A A, Montroll E W, Weiss G H, Herman R and Milnes H W 1960 Green’s Functions for Monatomic

Simple Cubic Lattices (Bruxelles: Académie Royale de Belgique)
Montaldi E 1981 Lett. Nuovo Cimento 30 403–9
Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167–81
Morita T and Horiguchi T 1971 J. Math. Phys. 12 986–92
Rashid M A 1980 J. Math. Phys. 21 2549–52
Srivastava H M and Karlsson P W 1985 Multiple Gaussian Hypergeometric Series (Chichester, West Sussex:

Ellis Horwood)
Watson G N 1939 Q. J. Math. Oxford 10 266–76


